
J .  Fluid Mech. (1975), vol. 68,  part 1, p p .  109-128 

Printed in Great Britain 
109 

An inviscid model of two-dimensional vortex 
shedding for transient and asymptotically steady 

separated flow over an inclined plate 
By TURGUT SARPKAYA 

Department of Mechanical Engineering, Naval Postgraduate School, 
Monterey, California 93940 

(Received 18 October 1973 and in revised form 5 June 1974) 

A potential flow model of two-dimensional vortex shedding behind an inclined 
plate is developed. The free shear layers which emanate from the sides of the 
plate are represented by discrete vortices through the use of the appropriate 
complex-velocity potential, the Kutta condition and the Joukowsky transfor- 
mation between a circle and the plate cross-section. The analysis is then applied 
to predict the kinematic and dynamic characteristics of the flow for various 
angles of attack. The results compare favourably with the available experi- 
mental data as far as the form of vortex shedding and the Strouhal number are 
concerned. The calculated normal-force coefficients are 20-25 yo larger than 
those measured by Fage & Johansen (1927). 

1. Introduction 
In this paper an inviscid model of two-dimensional vortex shedding behind 

an inclined flat plate in the incidence range from approximately 30 to 90" is 
developed. The model uses an approximate representation of the continuous 
vortex sheets by an array of discrete vortices. 

Following Rosenhead's (1 931) pioneering work, numerous authors became 
interested in this method. Recently, Clements & Maul1 (1975) gave a nearly 
complete list of the previous applications of the discrete-vortex approximation 
and stated clearly both the utility and the limitations of the method. Here only 
those studies which have a direct bearing on the present work will be briefly 
described. 

Kuwahara (1973), in a paper published after the initial submission of the 
present paper, studied two-dimensional vortex shedding behind an inclined flat 
plate through the use of the discrete-vortex approximation. The strengths of 
the point vortices were determined from the Kutta condition. t The vortices 
were introduced at  two arbitrary fixed points near the edges of the plate. 
Kuwahara found that the calculated values of the normal-force coefficients were 
on the average 1.5-2 times larger than those obtained experimentally and that 
they exhibited sudden increases or decreases with amplitudes as large as four 
times the average value. He did not calculate the Strouhal numbers as no 

method to satisfy the Kutta condition. 
t A referee has pointed out that Saks, Lundberg & Hansen (1967) have used a similar 
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periodic oscillations were discernible in his results. Through a parametric study 
of small variations in the point of appearance of t.he nascent vortices, Kuwahara 
also showed that not only the time of occurrence but also the amplitude of the 
oscillations of the normal-force coefficient strongly depend upon the assumed 
positions of the two fixed points, I n  fact, a small change in the position of the 
nascent vortices caused as much as an eightfold change in the normal-force 
coefficient. The present study shows that the difficulties encountered by Kuwa- 
hara are not a consequence of a deficiency of the method of discrete-vortex 
approximation but rather a consequence of the failure to recognize that the 
oscillation of the point of appearance of the vortices is of vital importance 
(Hronauer 1964) and is coupled with the manner in which the vortex sheets roll 
up. This fact, which has also been stressed by Gerrard (1967), has been ignored 
by all those who have satisfied the Hutta condition in similar studies of flows 
about bodies with salient edges (Clements & Maull 1975). 

The discrete-vortex model of vortex shedding behind a square-based body 
described in Clements (1973) has been developed to include a Kutta condition 
similar to that used by this author, and to describe a number of further flow 
situations related to the original one (Clements & Maull 1975). The positions of 
the vortices chosen were in the planes of the body sides and a short distance 
downstream of the separation points. Clements & Maull (1975) discovered, by 
trial computations, that, if it was a t  a distance of between 0-005 and 0.015 times 
the base height, the exact point of appearance of the vortices did not affect the 
Strouhal number of the shedding, nor the form of vortex cluster formation. 
However, they were unable to predict a satisfactory unique base pressure since 
the vortex strength necessary to satisfy the Kutta condition and the rate of 
change of circulation necessary to calculate the base pressure depended upon 
the distance of the nascent vortex from the separation point. Evident,ly, the 
value of the model would be enhanced if the forces and pressures acting on the 
bodies under consideration could be accurately predicted. This in turn requires 
a satisfactory mechanism of feedback from wake fluctuations to the fluctuations 
in the rate of circulation (Kronauer 1964) and in turn in the position of appear- 
ance of the nascent vortices. 

The work described herein introduces a number of improvements into the 
discrete-vortex representation of the shear layers, thereby eliminating the 
difficulties arising from the use of the Kutta condition and the occasional proxi- 
mity of the point vortices. Both the rate a t  which vorticity is shed into the wake 
and the position a t  which this vorticity appears are allowed to  vary with time. 

2. Mathematical description of the model 
Complex potential and the Kutta conditions 

The calculation of the velocity of any one of the vortices and the normal force 
acting on the body requires a transformation plane (in which the plate becomes 
a circle), a complex-velocity potential representing the vortices and the two- 
dimensional irrotational flow around the body, and the use of the generalized 
Blasius theorem. 
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FIGURE 1.  Flow in the (a)  transformed and ( b )  physical planes. 

The complex potential function w in the circle plane (see figure l a )  which 
describes a uniform flow U with a doublet at  the origin to simulate the cylinder, 
k+ 1 vortices (rotating counterclockwise) on the right-hand side of the wake 
(called p-vortices), k + 1 vortices (rotating clockwise) on the left-hand side of 
the wake (called q-vortices), and the images of all the p- and q-vortices in the 
circle may be written as 

in which rkp and ckp represent respectively the strength and location of the 
kth p-vortex, rkn and gkq the strength and location of the kth q-vortex, and c the 
radius of the cylinder; an overbar indicates a complex conjugate. The need for 
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the separate identification of the p -  and q-vortices and for the singling out of 
one of the vortices in each shear layer (namely Fop and ran) will become apparent 
later. 

The flow in the circle plane may be transformed to that about an inclined 
plate by the Joukowsky transformation 

2 = c+c2/y. ( 2 )  

The fact that the flow separates tangentially at the edges of the plate (Kutta 
condition) may be expressed by requiring 

The two point vortices Fop and rOq will be identified as either 'nascent vortices ' 
or 'Kutta vortices' for each will always represent the first vortex introduced 
into the flow at each edge of the plate. Furthermore, their strength and location 
at  the start of each step, i.e. at the time of their introduction into the flow, will 
be such that the Kutta conditions expressed by (4) and ( 5 )  will be satisfied. This 
and other computationa1 details will be explained later. 

Formulation of the resistance equations 
The forces exerted on a stationary body by a time-dependent flow represented 
by the complex potential w can be calculated from the generalized Blasius 
theorem by writing 

in which F, and Fp represent the components of force normal and tangential to 
the plate. 
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It is convenient to evaluate (6) in two parts by writing 

(dW/d<)2  (dc/dz) d< (7) 

X2 + iy2 = ip g ( w z ) ~ ~  - z(dw/dz) dz , ( 8 )  and 

which results from an integration by parts of the second part of (6); ( W Z ) ~ ~  is 
the difference between the values of wz at the beginning and end of the plate con- 
tour. Inserting (1) and ( 2 )  in (7)  and carrying out the indicated integration, one 
finally has 

a [  $- I 

m m 

k=O k=O 
Xl-i& = P  (rkqvkaw-rkpvkpy)+iP (r lcqUkqa-rkpukpz) ,  f9) 

in which ukqx and vkqw represent respectively the x and y components of velocity 
at  the centre of the kth q-vortex in the physical (z  = x+iy) plane. As will be 
pointed out later, the first sum in (9) is identically equal to zero, i.e. there is 
no force acting along the plate (known as the leading-edge suction in airfoil 
theory) and the Cisotti paradox (Birkhoff 1955) does not arise.? The steady 
component of the normal force reduces to 

71) 

The unsteady part of the force, represented by (8), may be evaluated by first 
noting that ( W Z ) ~ ~  is identically equal to zero since there is no jump in the stream 
function $ along the contour, or since the nascent vortices and their images 
are not connected to the edges of the plate by vortex sheets of finite or vanishingly 
small vorticity. The remaining integral may be written as 

which yields X 2  = 0, since c2/& + c2/ck is real, and 

Noting that c2/<kq + c2/ckq = ' t i k q ,  

where tikQ and q i k Q  represent the co-ordinates of the image of the kth q-vortex, 
equation (12) may be reduced to 

au a 
y2 = 4npc2 - at sina + 2p at I; (rkq tikQ - r k p  C i k p ) .  (13) 

The term in parentheses may also be expressed in terms of the velocities uikQ5 
and uikp5 by performing the indicated timewise differentiation. However, this 
procedure is hardly necessary and as far as the numerical calculations are con- 
cerned the use of ( 1 2 )  is easier and less time consuming. 

t This singular-point paradox is not eliminated in Wu (1962). 
8 FLM 6a 
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The sum of equations (10) and (13) yields tshe total force acting on an in- 
clined plate : 

.T/’, = Yl +Y,, 114) 

which may be expressed in terms of a normal-force coefficient C, defined as 

C, = 2Fn/pbU2 = F,/;?pCU2, 
where b = 4c. 

Velocities in the circle and plate plane 
Several of the equations obtained thus far require the evaluation of the velocities 
of the vortex centres. Moreover, the advancement of t,he position of each vortex 
in the z plane at  the end of each time interval requires the transformation of the 
positions of all vortices into the circle plane, the calculation of the velocities at 
each vortex centre in the circle plane and, finally, the reverse transformation 
of the velocities from the circle t o  the plate plane. For the velocities in the 
circle plane this reduces to subtracting from ( 1 )  the complex potential corres- 
ponding to the vortex, the kth, say, for which the velocity components are to 
be determined and evaluating the derivative of the remaining terms at  5 = &. 
To determine the velocities in the physical plane, however, one has to subtract 
(irk/%) log ( z  - zk )  from ( 1 )  or, in terms of 5, the terms (see, for example, Sarpkaya 
1967) 

It should be noted that the first term in (1 6) is the complex function corresponding 
to the kth vortex in the cplane. The second term appears merely as a consequence 
of the transformation used. Carrying out the procedure just described, one 
finally has the following relationship between the velocities of the vortices in 
the x and planes: 

and - 

Expressions similar to (1  9) and (20 )  may easily be written for the p-vortices as 
well as for each of the two nascent vortices with proper attention to their sign 
or the sense of rotation. 

The velocity components given by (17)  and (18) together with the Kutta 
conditions given by (4) and ( 5 )  render the 5, component of the force [the real 
part of (9)] identically equal to zero. Demonstrating this is rather lengthy and 
will not be done here. However, if one considers the fact that the Cisotti paradox 
(Birkhoff 1955) in a Joukowsky flow past a plate is a consequence of the infinite 
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velocities occurring at  the leading edge of the plate, and the fact that in tjhe 
present analysis the velocities at  both the leading and trailing edges of the plate 
are rendered finite by satisfying the Kutta condition at both points, it is easy to 
see that there can be no force or leading-edge suction acting on the single points 
at  either end of the plate, i.e. S, = 0. 

3. Method of calculation 

The rate at  which vorticity is shed into the wake is given by 
Vorticity Jlux 

where 6 is the boundary-layer thickness. This may be closely approximated by 

where V, and V, represent the velocities a t  the outer and inner edges of the shear 
layer. The fact that this simple expression gives a close estimate of the total 
vorticity flux through each sheet per unit time even for flows with rapidly curving 
streamlines has been demonstrated by Fage &; Johansen (1927, 1928) through 
numerous experiments with inclined plates, cylinders, wedges and ogival models. 

In  a discrete-vortex model, (23) may be employed in various ways provided 
that certain basic and experimentally observed facts are not contradicted, that 
the numerical procedure used to implement the method is stable, and that the 
results do not critically depend on the magnitude of the new and hopefully 
minimum number of disposable parameters introduced. The methods used in 
the past may be roughly classified into three categories. 

The first involves the use of the maximum velocity occurring in the boundary 
layer near the point of separation (Sarpkaya 1968). This procedure allows a 
reciprocal action between the wake and the vorticity flux and in turn between 
the wake and the boundary layer. 

The second involves the selection of a suitable fixed point in the flow near the 
separation point and the use of the velocity Uq at  that point to calculate the rate 
at  which vorticity is shed into the wake from (Clements 1973; Clements & Maul1 
1975; Kuwahara 1973) 

dF/d t  = +Ui. (23) 

In  this method no interaction is allowed between the shed vortices and the ampli- 
tude of oscillation of the point of appearance of the vortices. As discovered by 
Kronauer (1964) and substantiated by Gerrard (1967), the oscillation of the 
point of appearance of the vortices is vital to the continuance of oscillations in 
resistance and is coupled with the manner in which the vortex sheets roll up. 
This fact was also overlooked by Kuwahara (1973), who fixed the position of 
the appearance of the nascent vortices. This resulted in violent normal-force 
oscillations (of varying magnitudes for the angles of incidence considered) wholly 
unrelated t o  the  shedding of vortices. Evidently, the effect of the departure on 

8-2 
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the point chosen from the separation point on the resulting flow characteristics 
and forces will have to be assessed through separate calculations. 

The third category involves the isolation of the shear layer from the separation 
point (Gerrard 1967), the selection of a control surface downstream of separation 
and the calculation of the vorticity flux across the control surface through the 
use of suitable assumptions. In this method, the effects of the vortex sheet 
upstream of the control surface are ignored and the effect of the disposable 
parameters on the resulting flow is evaluated through separate calculations. 

Apparently, there is not a unique procedure for calculating the rate at  which 
vorticity is shed into the wake and the one which most clearly reproduces the 
experimentally observed features of the free shear layers must be adopted. 
Fage & Johansen (1927,1928), through quite ingenious experiments with various 
bluff bodies, have shown that vorticity is shed from the two sides of an asym- 
metric body at  the same rate; that the motion in a sheet is steady near the body, 
except possibly near the inner edge of the shear layers; that fluid flows into a 
sheet through both edges, but at a greater rate through the outer edge; that at 
each section of the sheet the velocity rises from a small value to a well-marked 
maximum value (approximately V,/U = 1.45) and then very slowly decreases 
to about 1.35 within a distance of approximately y 1: 2c, where the breadth of 
the sheet reaches a value A N c ;  and, finally, that the velocity V, at  the outer 
edge of the sheet is much larger than the velocity V, at  the inner edge and Vg 
may be ignored in (22) in calculating the vorticity flux. 

In  the present model, as it is applied to a flow about an inclined plate, the 
vorticity could have been calculated, at  each time interval, through the use of 
the mathematically finite velocity occurring at  the edge of the plate. This is a 
plausible but not a numerically stable procedure since the separation points are 
singularities of the transformation used. This difficulty has also been noted by 
Clements (1973). 

It is apparent from the foregoing discussion of the various procedures used in 
the determination of the vorticity flux and the experimentally observed charac- 
teristics of the free shear layers that a new method will have to be devised which 
will make the use of the Kutta conditions possible and will permit a reciprocal 
action between the wake and the vorticity flux. The simplest and most direct 
procedure which will make these considerations possible is the use of the velocity 
Us, in the shear layers by writing 

Then the question arises as to what is meant by Us, in a shear layer approximated 
by discrete vortices which have different constant strengbhs. The use of the 
velocity at  the position of a single vortex (with k = 1, say) would not be satis- 
factory partly because rlP or rlP vortices are too close to the edges of the plate 
and the radii of curvature of their pathlines are relatively small. Thus the 
numerical errors involved in the determination of their transport velocities 
could give rise to unacceptable oscillations in the vorticity flux. One would, 
therefore, abandon this idea in favour of using the average of the transport 
velocities of a number of vortices in each shear layer. This will not only smooth 
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out any numerical errors but will also give a better representation of the velocity 
and vorticity flux in the shear layers. Thus the decision to be made concerns 
the number of vortices whose average transport velocity is to be taken as qh. 
It is clear at  the outset that k or k At cannot be too large. First, if k were too large 
the kth vortex would be either in or very close to the first vortex cluster. Second, 
if k A t  were too large, larger than the period of vortex shedding, then the inter- 
action between the wake and the free shear layers would be lost. Several pre- 
liminary calculations have shown that taking Us, as the average of the velocities 
of the first four vortices (k = 1-4) will be quite satisfactory and that the results 
would not materially differ if one used three or six vortices. The decision to use 
only the first four vortices was based partly on the fact that the fourth vortex 
is located at about y N c and that the breadth of the actual shear layers at 
y N c is rather small and, more important, there is a well-defined shear layer. 
Furthermore, the time interval during which four vortices are introduced into 
the flow is about of the period of vortex shedding. This time interval is suffi- 
ciently small that during it Ush, as calculated above, can respond to the changes 
in the wake. Finally, the number of vortices used must be small enough to allow 
the nascent vortices to respond to the changes in the shear layers without too 
large a phase lag. In conclusion then, the strength of each new vortex at each 
shear layer was calculated through the use of (24). In  the player, Us, = Ushp, the 
average of the velocities of four p-vortices in this layer, i.e. 

For the other shear layer, us,, is calculated in the same manner. 
SuEce it to say on this very important aspect of the discrete-vortex model 

that the procedure described above recognizes the possibility of an oscillation 
in the rate of shedding of circulation even without an oscillating wake, permits 
a reciprocal action between the shear layers and the wake, and finally reduces 
the number of disposable parameters in the calculation of the vorticity flux to 
one, the number of vortices near the origin of the shear layers. 

Introduction, convection, cancellation and combination of vortices 
The introduction, as well as the subsequent convection, of the nascent vortices 
is of major importance in the evolution of the entire wake. They must be intro- 
duced at sufficiently small time intervals and convected in such a manner that 
they can reasonably follow the true streamlines in regions of flow where the 
radius of curvature of the streamlines is small. Their strength and position must 
be such that the Kutta conditions are satisfied at  the start of each time interval 
and that their point of appearance reacts to and interacts with the motion of 
the wake. 

To explain the method let us consider a particular time t after the start of 
the motion and assume t to be sufficiently large that there are at  least four 
vortices in each shear layer. Then the appearance and convection of vortices 
proceeds as follows. 

(a) Calculate Ushp and V,,, from (25 ) .  
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( b )  Calculate A r ,  and AT,, from Ar,, = iu:h,,At and Ar,, = &o:h,At. 
(c) Calculate the positions cop and go, of the nascent vortices Fop and 

from (4) and (5).  A careful examination of these equations shows that cop and 
Q, may be calculated through the use of a suitable iteration scheme. 

( d )  Calculate the velocities at  the position of each vortex (k = O-rrh) through 
the use of (17 )  and (18). 

(e) Convect only the vortices rlP and rl, for a time interval *At using the 
expressions 

(26) 
x(t + QAt) = z ( t )  + Qu(t) At, 
g ( t  +*At) = y(t)  + +v(t) At. 

(f) Repeat steps ( d )  and (e) five times. 
( g )  Calculate the velocities a t  the centres of all the vortices and convect the 

(h)  Repeat steps (a)-(g) five times. 
(i) At the end of the fifth interval, i.e. at AT = 5At, call Fop = 

vortices with k = 2-m for a time interval At using expressions similar to (26). 

and 
Fop = rlq. In  other words, at  every 5At a new vortex of permanent character is 
born. Obviously, at the end of any time interval At there is only one nascent 
vortex and the Kutta condition is satisfied in some mean sense only since the 
flow is unsteady. 

The most important features of the foregoing procedure are that considerable 
attention is paid t o  the motion of the first vortex, where the streamlines 
are rapidly curving, and that both the rate a t  which vorticity is shed into 
the wake and the position at  which this vorticity appears are allowed to vary 
with time. 

The description of the introduction and convection of the vortices would not 
be complete without an explanation of the introduction of the first four vortices, 
which enable the model to calculate the rate at which vorticity is shed into the 
wake and sustain the evolution of the wake. The fluid was set in motion impul- 
sively from rest. Thus, initially, there was no vorticity in the fluid and a simple 
method had to be devised to generate the first four vortices in each shear layer. 
For this purpose, it was decided to rely on the experimental facts established by 
Page & Johansen (1927, 1928) rather than on some other plausible but never- 
theless arbitrary procedure. As stated earlier, the velocity V, in a shear layer in 
a steady flow is about 1-4U and the vorticity flux may be calculated from 
A r  2: &V:At. Thus A r  N At. Accordingly, the strengths F l p  and rln of the 
first vortices were taken equal to 5At and these vortices placed on the x axis in 
accordance with (4) and (5) .  Then they were convected in five steps at time 
intervals of *At. Then two nascent vortices of strengths ATop = Arop = At were 
introduced at time intervals of At as previously described and the first vortices 
were further convected for a time interval At. At time 5At, the last nascent 
vortices became the first vortices and the previously introduced and convected 
vortices became the second vortices. The foregoing procedure was repeated four 
times, i.e. until there were four vortices in each shear layer. Then the calculations 
proceeded as described in steps (a)-(if. 

The above method of starting the calculations may be discussed at  length in 
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terms of the initial values of a r / a t ,  the radius of curvature of the initial stream- 
lines, etc. I n  fact, a t  one time during the evolution of the method an attempt 
was made to use the spiral form of the shear layers a t  small times as determined 
by Wedemeyer (1961). The analysis had first to be applied to an inclined plate 
since Wedemeyer’s analysis was carried out only for 05 = in. Then four vortices 
of equal strength were placed on the spiral in such a ma.nner that the Kutta 
conditions were satisfied. It was soon discovered that this laborious procedure 
did not produce results noticeably different from those of the one finally adopted 
herein. I n  fact, there were no differences in the vortex strengths and positions 
after the tenth vortex. 

Three additional features of the model concern the removal and coalescence 
of vortices and the massing of the effects of clusters of point vortices into those 
of an equivalent single vortex. The vortices which approach too close to tjhe 
rear of the plate will ordinarily be dissipated by the action of viscosity as first 
noted by Page & Johansen (1937). In  the absence of viscosity and t’he no-slip 
condition, such vortices can acquire extremely large velocities. Thus, they had 
to be removed from the calculation whenever they came nearer than 0- lc  to 
the rear face of the plate. I n  passing it should be observed that a line vortex 
which has been in the wake of a viscous flow with a Reynolds number of about 
40000 for a period t = 8c/U will have a core radius of approximately 0.07~ 
according to Schaefer & Eskinazi (1959). Thus the distance 0 . 1 ~  is of the order 
of t’he core radius of a decaying vortex. 

As for the coalescence of vortices, it has been recognized (Gerrard 1967; 
Moore 1971, 1974; Chorin & Bernard 1972; among others) that the orbiting 
motion of point vortices can rapidly affect neighbouring vortices and that vor- 
tices of opposite circulation could remove themselves from the wake at high 
speeds when in close proximity. This was avoided by coalescing such vortices 
for k > 20 with a separation of less than 0-ic, i.e. by combining the two vortices 
into an equivalent single vortex. 

I n  real flows only a fraction (say about 60 yo) of the circulation fed into the 
shear layers is found in the vortex clusters or in the concentrated vortices of the 
K k m & n  vortex street (see, for example, Mair & Maul1 1971). In  the absence of 
such a viscous and/or turbulent dissipation, the loss of vorticity a t  the rear 
face of the plate and “a small amount of cancellation between elementary vor- 
tices of opposite sign which enter the same rolled-up vortex core” (Clements 
1973) are the only two mechanisms which could bring about some loss in circu- 
lation in the concentrated vortices. Evidently, these two mechanisms are not 
sufficient to account for an approximately 40% loss in circulation. This led 
Clements (1973) to reason that the mechanism whereby much of the vorticity 
is lost must be viscous in nature. 

Finally, the limitations imposed on the calculations by the size of the computer 
used (IBM-360/67) and the computer time available (maximum 3 h per run) 
made it necessary to combine the point vortices in a given cluster into an equiva- 
lent single vortex whose strength was the sum of the individual strengths and 
whose position was the centre of vorticity of the cluster. This procedure was 
used when a cluster passed downstream beyond about yIc = 8. Exploratory 
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calculations with or without such a combination have shown that C, is not notice- 
ably affected and that the method of combination should be used to save com- 
puter time and to produce a simple and clean picture of the vortex street. 

Time interval 
The selection of an optimum time interval was of primary importance in achiev- 
ing a relatively time-step insensitive result and in saving computation time. 
A large number of calculations have been repeated with a single program by 
changing only the time step. The time steps are given in terms of a normalized 
time t which is related to the real time t ,  by t = Ut&. Experiments on At began 
with At = 0.16 and were repeated with At = 0.08, 0.04 and 0.02. The results 
showed that At = 0.16 was too large and that the results with At = 0.08, 0.04 
and 0.02 did not significantly differ. However, the computation time required 
with At = 0.02 was about ten times larger than that with At = 0.04. In  view of 
the fact that a new vortex is introduced into the wake every 5At, all the calcu- 
lations reported herein were made with At = 0-04. 

The normalized circulation r / U c  of the point vortices in the wake took values 
from about 0.16 to 0.40. This was about 1-3 yo of the total circulation found in 
a vortex cluster. 

In  closing the description of the method, a few additional comments must be 
made. First, in advancing the position of the vortices, two additional schemes 
were tried through the use of either 

x(t  + At)  = z ( t  - At)  + 2At u ( t )  
z(t + A t )  = x( t )  + &[3u(t) - u(t  - At) ]  At. 

These did not lead to any noticeable differences since to begin with At was chosen 
sufficiently small. Second, the normal force acting on the plate was calculated 
from the positions, velocities and strengths of the vortices at every At using 
(lo),  (13) and (14). Third, no initial perturbations had to be introduced into the 
flow since the flow was inherently asymmetric and capable of generating an 
alterna'ting vortex street. Finally, the first sum in (8) was calculated and printed 
at  every At. The calculations showed that the maximum values of X,/pU2c were 
less than 

4. Results and comparison with experiments 
Computations were made for angles of attack from 40 t o  80" a t  10" intervals. 

The detailed discussion of the results and their comparison with the experiments 
will be confined to a = 50°, in the interest of space, and additional comments 
will be presented for other angles of attack. 

The computer programs provided, a t  any time specified, the positions of all 
the vortices, the rate of shedding of vorticity into the shear layers from the 
leading and trailing edges of the plate, and the normal-force coefficient given 

7 Similar expressions are used for y ( t ) .  
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FIGURE 2. For legend see next pago. 
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FIGURE 2. Vortex arrangement>s over one half-cycle of steadily periodic flow 
(a  = 50"). 0 ,  positive vortices; A, negative vortices. 

by (15). The vortex shedding frequency was calculated using the period of 
oscillations in d r l d t  when the flow has attained a steady or nearly steady state. 

Figure 2 shows the evolution of the wake during a particular time interval 
and the replacement of vortex clusters or shed system of vortices by equivalent 
single vortices. Figures 3, 4 and 5 (plates 1 and 2) show the vortex shedding 
at  times t = 48, 62 and 74, respectively. Figures 4 and 5 correspond to the first 
and last frames in figure 2 .  The pictures were taken with a thin flat plate 3.75 ern 
wide (see Sadler (1973) for a detailed description of the experimental apparatus) 
immersed in a channel 90 ern wide and 15 cm deep. The flow was started nearly 
impulsively from rest and visualized with aluminium powder. The Reynolds 
number of the asymptotic steady flow was about 11 000. The evolution of the 
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wake fi-om the start of the motion was photographed with a high-speed cine 
camera. Figures 3 , 4  and 5 correspond to three frames of such a particular motion 
picture a t  times t = 48, 62 and 74 respectively. 

A comparison of figures 4 and 5 with the corresponding frames in figure 2 
show that the agreement between the positions of the vortex clusters and shear 
layers predicted numerically and those observed experimentally for a = 50" is 
quite good. Equally satisfactory agreement was obtained for all the other angles 
of attack studied herein. In  fact, it may be said that the simulation of the actual 
wake flow of a real fluid by a simplified model within the framework of potential 
flow theory accounts for the essential features of a very complicated process 
not only in the far wake, where the effect of discretization of the shear layers 
should be rather small, but also in the near wake, where the rolling up of the shear 
layers is strongly dependent on the instantaneous distribution of vorticity and 
the process of viscous dissipation. However, the validity of the model cannot be 
fully justified by the agreement with the experimental observations of the 
kinematics of the flow field alone. There must be an equally satisfactory agree- 
ment between the observed and predicted dynamic characteristics (i.e. Strouhal 
numbers, drag coefficients, vortex strengths, etc.) of the flow. 

The rate of shedding of vorticity into the shear layers emanating from the 
leading and trailing edges of a plate set a t  an angle of attack of 50" is shown in 
figure 6. At t = 0,  ar/at = 1 because of the way the first four vortices are intro- 
duced into the shear layers. Apparently, following the initial period of flow 
establishment, equal amounts of vorticity are shed during each cycle from each 
edge of the plate. This is in conformity with the measurements of Fage & 
Johansen (1927, 1928). It is also apparent that this rate varies periodically with 
an amplitude of about aaI'/at about a mean value of unity ( U  and c are taken 
equal to unity). Fage & Johansen (1927) found no oscillations in V, (the velocity 
a t  the outer edge of the shear layer) but recorded non-periodic oscillations in 
velocity at points well within the shear layer. The measurements of Fage & 
Johansen (1928) have also shown that the mean vorticity flux increases from 
0.92 for a = 30" to 1.10 for a = go", with an expected intermediate value of 
0.99 for a = 50". The present calculations yielded a mean value of ar/at 2: 0.96 
for a = 40" and nearly unity for all other angles of attack. In  terms of the average 
shear-layer velocity u&, the above angles correspond to  us& = 1.41 for a > 50" 
and to Cih = 1-39 for a = 40". The periodic oscillations in the vorticity flux 
correspond to changes in from approximateIy 1-2 to 1.6. During a given 
cycle, the lowest value of in a given shear layer occurs when a vortex cluster 
is about to break away from that shear layer [see figure 7 (plate 2) and frames 2 
and 7 in figure 21. The maximum value of us, also occurs a t  the same time but 
in the other shear layer. In  other words, one vortex cluster a t  a given edge is 
fed the largest amount of vorticity when another cluster in the vicinity of the 
opposite edge is just about to break away from the layer which feeds it. 

Similar oscillations in the vorticity flux have been observed by others (e.g. 
Sarpkaya & Garrison 1963; Gerrard 1967; Chaplin 1973; Clements 1973) in 
connexion with flow about bluff bodies of different shapes. For example, Clements 
(1973) found periodic oscillations with an amplitude of about 0-20 aI'/at about a 

- 

- 

- 
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FIGURE 6. Rate of shedding of vorticity into shear layers from the leading and trailing 
edges of the plate (a = 50"). Note that the weakest and the strongest vortices are shed 
from the plate at  the start of the motion from the trailing and leading edges respectively. 

mean value of 0.765 for a flow in the near wake of a square-based bluff body. It 
should be noted in passing that the mean vorticity flux obtained by Clements 
(1973) is quite comparable with that measured by Fage & Johansen (1927) for 
a similar based body (i.e. an extended ogival shape). 

The Strouhal number of the vortex shedding was determined from figures 
similar to figure 6 by taking the inverse of the average period of the last two or 
three full cycles of oscillation. In  the range of 40" < a < 80", which was also 
the range of calculations, it was found that 

S = 4fcsina/U = 0.154&0.003. 

Over the same range, Fage & Johansen found S = 0.148 & 0.003 with a tunnel- 
height to plate-chord constriction ratio of K = 14. Abernathy (1962) obtained 
S = 0.164 for h7 = 13.98. The Strouhal numbers obtained herein may be con- 
sidered in good agreement with those obtained experimentally in view of the 
fact that the Strouhal number for a given body decreases to a minimum with 
increasing constriction ratio and that the experimental values for the same 
constriction ratio may vary with the end conditions of the model (Fage & Johan- 
sen 1937, 1928; Abernathy 1962), with the intensity and scale of turbulence of 
the ambient flow (Schubauer & Dryden 1935), and possibly with the diffusion 
and strength of the shed cluster of vortices. The last possibility, which is also 
closely related to the mechanism of vorticity loss in real and computed flows, 
needs to be further discussed. 

The calculations have shown that the strength of the vortex clusters varies 
from 84 to 91 yo of the vorticity generated in each shear layer, the 10-15 yo 
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loss in vorticity arising from the removal of vorticity at the rear face of the 
plate and a small amount of cancellation between elementary vortices of oppo- 
site sign which enter the same rolled-up vortex core. The corresponding experi- 
mental values for flat plates, cylinders and many other types of bluff bodies 
vary from about 50 to 66 yo (Fage & Johansen 1927, 1928; Mair & Maul1 1971). 
Thus, the vortex clusters of the present model are about 50 % stronger than those 
found in real flows under similar circumstances. Clements (1973) has arrived at  
essentially the same conclusions. The large discrepancy between the experiments 
and calculations is undoubtedly due to the difference in the mechanisms whereby 
vorticity is lost. In real flows, part of the vorticity is lost immediately behind the 
plate by viscous action and by mixture of the positive and negative vorticity 
from the two edges of the plate, and part in the shedding process, during which 
the vortex cluster to  be shed attains its minimum transport velocity and draws 
oppositely signed vorticity across from the other side of the wake (Gerrard 1967). 
In fact, it  is conjectured that the loss in vorticity depends on the particular time 
in a given cycle and reaches its maximum rate just at the time of shedding as 
defined previously. The numerical model cannot simulate such a kinematic- or 
eddy-viscosity dependent phenomenon. If necessary, an additional loss in 
vorticity will have to be artificially introduced into the model, beyond and 
above that produced by the two mechanisms cited above, in order to bring the 
strengths of the shed vortex clusters into closer agreement with those obtained 
experimentally. It appears that the Strouhal number does not strongly depend 
on the strength of the shed cluster of vortices. 

Among several other parameters such as the velocity distributions in time or 
space, the positions of the vortices, etc., which could have been compared with 
those obtained experimentally, the normal force acting on the plate was thought 
to be the most significant one both from a practical and analytical viewpoint. 
The coefficient C, was calculated, as described previously, at  suitable time 
intervals and plotted as a function of the normalized time t. Figure 8 shows the 
normal-force coefficient for a = 50". Force coefficients for other angles of 
attack are quite similar in character and vary only in their asymptotic values. 

Following a period of rapid rise, the normal-force coefficients exhibit signi- 
ficant oscillations in response to  the vortex shedding. These oscillations, which 
have a frequency nearly equal to twice the vortex shedding frequency, decrease 
to about 10 % of the average value of C, in magnitude as the number of vortices 
in the wake increases. Finally, for a = 50", C, approaches an asymptotic value 
of about 2. Table 1 gives the asymptotic values of C, obtained in the present 
analysis and those obtained experimentally by Fage & Johansen (1927j.t 

The classical theory of Kirchhoff and Rayleigh (see Lamb 1945, pp. 99-103) 
predicts a normal-force coefficient C, = 2n- sin a/(4 + n- sin a), which is about 
half that measured by Fage & Johansen (1927). Furthermore, the model is 
known to be unrealistic in specific details. 

Flachsbart (1932) measured a value of C, = 1.96 for a = 90" which was 
independent of the flow Reynolds number 4Uc/v  in the range 6 x 1 0 3 4  x 105. 

t The C,, values obtained by Fage & Johansen (1927) have been corrected for the wind- 
tunnel interference as suggested by Glauert (see Fage & Johansen 1927, p. 196). 
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FIGURE 8. The variation of the normal-force coefficient with time in transient 
and asymptotically steady separated flow over an inclined plate (a = 50"). 

c n  cn 
a (dog) (present study) (Fage & Johansen 1927) 

40 1.75 1-45 
50 2.00 1.65 
60 2.25 1.80 
70 2.35 1.84 
80 2.40 1-86 

TABLE 1 

Although fairly independent of Reynolds number, the normal-force coefficient 
is known to depend on the tunnel-plate constriction coefficient and on the tur- 
bulence intensity of the ambient flow. Schubauer & Dryden (1935) have shown 
that turbulence does lower the pressure in the wake and increases the drag 
coefficient, by perhaps affecting the stability of the shear layers. 

The calculated asymptotic values of C, are 20-25 % larger than those measured 
by Fage & Johansen (1927). The only explanation which may be offered for this 
large discrepancy is that the strength of the shed vortex clusters is about 50 % 
larger than that found in real flows. This view is strengthened by the fact that 
the model predicts fairly well the kinematics of the flow and the Strouhal number. 
Attempts made to incorporate into the model an artificial viscous and/or turbu- 
lent diffusion of vorticity (ageing the vortices, systematically reducing the 
strength of the shed vortex clusters, etc.) will not be described here. An appro- 
priate reduction in the strength of the vortices, particularly in the near wake, 



Vortex shedding from inclined plate 127 

did bring about a reduction in the normal force. The important fact is that the 
discrete-vortex approximation predicts the normal-force coefficient with a 20 yo 
error only even without an artificial reduction in the strength of the shed 
vortices. 

5. Conclusions 
A discrete-vortex approximation has been used to  model the surfaces of 

discontinuity, or coherent vortex sheets, and the vortex cores in a two-dimen- 
sional flow past an inclined flat plate. The essential characteristics of the model 
are contained in the use of the Kutta condition and in the determination of the 
rate of shedding of vorticity from the average of the instantaneous transport 
velocities of the first four vortices. Both the rate a t  which vorticity is shed into 
the wake and the position a t  which this vorticity appears are allowed to vary 
with time. The model predicts fairly satisfactorily the Strouhal number and the 
kinematic features of the flow. The calculated normal-force coefficients are 
about 20 % larger than those obtained experimentally. I n  spite of this, however, 
the discrete-vortex model emerges as one of the most powerful tools in establish- 
ing a link between the characteristics of the wake, the body shape and the 
resulting forces with relatively few disposable parameters such as the time step 
and the number of vortices used in calculating the mean velocity in each shear 
layer. No other analytical or numerical model has yet been able t'o produce 
equally satisfactory results a t  sufficiently large Reynolds numbers. 

This work formed a part of a broad programme of research in unsteady flow 
past bluff bodies and financially supported by the National Science Foundation. 
The author is grateful to the referees for valuable suggestions and comment's 
and to Dr R. R. Clements and Dr D. J. Maul1 for an advance copy of their paper 
'The representation of sheets of vorticity by discrete vortices '. 
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